
A Biomed Data Analyst Training Program

Data types and data integration

Professor Ron S. Kenett

1



numbers

data

statistical analysis

findings

information

Insight, knowledge

2



http://waze.com

http://moovitapp.com

https://moodle.com
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Material Controls

Factory Execution 
Factory Productivity

Planning and Simulation

Equipment Productivity
Equipment Controls

WIP, WORKFLOW, EXPERIMENTS, RECIPE

CAPACITY, STARTS, LAYOUTS, MULTI-FACTORY

PRODUCT DELIVERY TO EQUIPMENT
AUTONOMOUS ROBOTS

PREVENTATIVE MAINTENANCE, EQUIPMENT AUTOMATION

DATA COLLECTION, BIG DATA

DETECTION: SPC

DISPATCHING, SCHEDULING, REPORTING, 
Prediction

Material Controls

Factory Execution 

Factory Productivity

Planning and Simulation Equipment Productivity

Equipment Controls
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Digital Twin



https://ijhpr.biomedcentral.com/articles/10.1186/s13584-022-00531-y

https://rdcu.be/cLMKZ

https://academic.oup.com/pnasnexus/article/1/3/pgac125/6673789

https://academic.oup.com/pnasnexus/article/1/3/pgac125/6673789
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https://ijhpr.biomedcentral.com/articles/10.1186/s13584-022-00531-y
https://rdcu.be/cLMKZ
https://academic.oup.com/pnasnexus/article/1/3/pgac125/6673789
https://academic.oup.com/pnasnexus/article/1/3/pgac125/6673789


Qualitative Data

• Measurements that do not exist on any naturally occurring numerical 
scale; they are classified into categories.

• Nominal

• Ordinal

Nominal data is categorical data that has no order or ranking.
Examples include: eye color, gender, country of origin, etc.
Nominal data can be represented by numbers, but the numbers do not have any meaning 
beyond labeling categories.

Ordinal data is categorical data that has a natural order or ranking.
Examples include: education level, income level, rating scales (e.g., 1-5), etc.
Ordinal data can be represented by numbers, and the numbers have meaning in terms of 
their rank, but the intervals between them are not necessarily equal
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Interval and Ratio Data

Interval data is numerical data that has equal intervals between values, but no true 
zero point. Examples include: temperature (in Celsius or Fahrenheit), years (e.g., 
1950, 2000, etc.), etc.

Interval data can be added, subtracted, and averaged, but it doesn't make sense to 
multiply or divide them.

Ratio data is numerical data that has equal intervals between values and a true zero 
point. Examples include: height, weight, distance, age, etc.

Ratio data can be added, subtracted, multiplied, and divided
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Quantitative data
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Maintenance 
schedule, etc…

Day 1

Oper8002 Oper9050 Oper9070

Day 2

Oper8002 Oper9050 Oper9070

The data: v7022, v7023, v7024
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https://www.youtube.com/watch?v=g4gxLG2IQeo

https://www.youtube.com/watch?v=g4gxLG2IQeo
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Is different
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Is different
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Nonlinear model
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T5R
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T1R

Nonlinear model
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Angular Resampling of  Ball Bearing Engine

Time Cycle

Frequency Order

Angular Resampling
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Text Data – Medical Device Inspections

•Data: 27,594 inspection observations from 
fda.gov.

•Objective: Determine the most frequent themes 
in inspection observations for medical devices.

.
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The Data
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CFR - Code of Federal Regulations
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An MDR report was not submitted within 30 days of 
receiving or otherwise becoming aware of information 
that reasonably suggests that a marketed device may 
have caused or contributed to a death or serious injury. 
[127]
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An MDR report was not submitted within 30 days of 
receiving or otherwise becoming aware of information 
that reasonably suggests that a marketed device has 
malfunctioned and would be likely to cause or 
contribute to a death or serious injury if the malfunction 
were to recur. [271]
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MNIST
Modified National Institute of 

Standards and Technology

Contains 60,000 training images 
and 10,000 testing images

Deep learning
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Neural 
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Analysis goal

g X
Available data 

f
Data analysis

method 

Utility measure

U

Data 

Quality

Information 

Quality

Analysis 

Quality

1. Data resolution

2. Data structure

3. Data integration

4. Temporal relevance

5. Chronology of data and goal

6. Generalizability

7. Operationalization 

8. Communication

Goals

Analytic 
Space

Domain 
Space

Knowledge

InfoQ(f,X,g) = U(f(X|g)) 

What

How

30

InfoQ



InfoQ(f,X,g) = U( f(X|g) ) 

The potential of a particular
dataset to achieve a particular
goal using a given empirical
analysis method

31

g A specific analysis goal

X The available dataset

f An empirical analysis method

U A utility measure

Kenett, R.S. and Shmueli , G. (2014) On Information Quality , Journal of the 
Royal Statistical Society, Series A (with discussion), Vol. 177, No. 1, pp. 3-38.  
http://ssrn.com/abstract=1464444.

Information Quality
https://link.springer.com/chapter/10.1007/978-3-030-43823-4_1

https://github.com/pywash/pywash Band C (Conceive)
Band B(Believe)
Band A (Analyze)
Band AA (Allow Analysis)
Band AAA (Full Readiness)  

https://github.com/gedeck/mistat

http://ssrn.com/abstract=1464444
https://link.springer.com/chapter/10.1007/978-3-030-43823-4_1
https://github.com/pywash/pywash.
https://github.com/gedeck/mistat


“Quality of Statistical Data” 
(Eurostat, OECD, NCSES,…)
• Relevance
• Accuracy
• Timeliness and punctuality
• Accessibility
• Interpretability
• Coherence
• Credibility

InfoQ dimensions
1. Data resolution
2. Data structure
3. Data integration
4. Temporal relevance
5. Chronology of data and goal
6. Generalizability
7. Operationalization
8. Communication
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Assessing Information Quality

http://www.nsf.gov/statistics/information-quality.cfm
http://epp.eurostat.ec.europa.eu/portal/page/portal/ver-1/quality/documents/ESQR_FINAL.pdf
http://www.oecd.org/std/qualityframeworkforoecdstatisticalactivities.htm

Assess dimensions versus goal Assess properties

http://www.nsf.gov/statistics/information-quality.cfm
http://epp.eurostat.ec.europa.eu/portal/page/portal/ver-1/quality/documents/ESQR_FINAL.pdf
http://www.oecd.org/std/qualityframeworkforoecdstatisticalactivities.htm


An Italian Case Study

33

Kenett, Ron S., Applications of Bayesian Networks (2021). http://dx.doi.org/10.2139/ssrn.2172713

InfoQ(f,X,g) = U(f(X|g)) 

f: Use Bayesian networks to model the dependence structure of the variables 

in the data set and to calculate the conditional rank correlations

g: Understand the influence on sales of several variables, such as number of 

employees, to make predictions and derive diagnostics.

X: combined survey data and individual company performance with data 

reported to the stock exchange.

U: Sales prediction error in employment policy economic programs

http://dx.doi.org/10.2139/ssrn.2172713


#1 Data Resolution

Data collected at the company level.

I: Periodic survey waves of self reports

II: Quarterly stock exchange reports
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Goal: Predict sales using  # employees in the 
context of a regional development plan 



#2 Data Structure

35

I: Survey Data
II: Quarterly 

Reports



I: The Assolombarda Data

• Assolombarda is an Italian association of about 5,000 firms located 
in the province of Milan and in other provinces of the north of Italy, 
and represents manufacturing and service companies. 

• The associated firms employ about 300,000 workers locally and 
several hundred thousands in the whole country. 

• Assolombarda periodically collects data through questionnaires 
sent to the associated firms, in order to gather information about 
the economic climate, firms' activity and production, and the 
number and types of employees.

• The data analyzed contains information collected through one of 
the association surveys in 2007, and it is about 167 firms located in 
the provinces of Milan and Lodi. 
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I: The Assolombarda Data

The variables in the dataset are:

• sales: firm annual turnover;

• emp: average number of employees;

• rise: number of managers receiving wage rise;

• rise2: number of managers that will receive wage rise in the 
following year;

• prom: number of employees gaining a promotion;

• horiz : number of employees involved in horizontal 
movements;

• ext: number of people employed in the external market;

• grad: number of newly-graduated employees;

• qual: number of newly-qualified employees.
37
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Kenett, Ron S., Applications of Bayesian Networks (2021). http://dx.doi.org/10.2139/ssrn.2172713

http://dx.doi.org/10.2139/ssrn.2172713


I: The Assolombarda Data
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II: The FTSE-MTB Data
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The FTSE-MIB is the benchmark stock market index for the Italian national stock 
exchange and consists of the 40 most-traded stock classes on the exchange. The 
dataset analyzed here contains information from the balance sheets of the 40 
largest Italian firms belonging to the Italian stock market.  The variables used in 
the analysis are:
• sales: firm annual turnover; 
• emp: average number of employees; 
• goodwill: difference between the balance sheet assets and the sum of 

intangible assets and equipment at market value; 
• ncas: non-current financial assets; 
• stocks: stocks and work in progress; 
• prov: provisions for liabilities and non-recurring expenses; 
• ncliab: non-current liabilities; 
• cliab: current liabilities. 

X



II: The FTSE-MTB Data
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#3 Data Integration

42

Calibration link

I II

2007 Quarterly updates



https://libri.unimi.it/index.php/milanoup/catalog/download/73/155/653-1
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https://libri.unimi.it/index.php/milanoup/catalog/download/73/155/653-1


https://www.mdpi.com/1660-4601/19/8/4859/pdf 44

https://www.mdpi.com/1660-4601/19/8/4859/pdf


Goals of Research

• To assess the impact of pandemic management and 
mitigation policies on pandemic spread and 
population activity.

• To examines the effect of mobility restriction 
measures in Italy and Israel and compares the 
association between health and population mobility 
data.

• To provide decision makers a way to conduct scenario 
analysis to help support pandemic management 
policies.

Health

Mobility

Mobility

Mobility

45



Methodology
1. Collect data on health and population behavior from ministries of health 
and google mobility

2. Integrate the data using Bayesian networks and determined proper lags 
using arc strength indicators. 

3. Assess the derived network structure using confirmatory SEM. 

4. Discretize the data accounting for local thresholds and use the resulting 
BNs to assess alternative scenarios. For example: what would be the impact 
of closing airports? 

5. Calibrate the data from Italy and Israel using “wave” time windows and 
using country-based thresholds.

6. Compare and contrast: The fact that we did this analysis in two countries 
proved very effective from a methodology viewpoint.  46



Bayesian 
Network (BN)

analysis to 
Established links

Structural 
Equation Models 

(SEM) to 
confirm links
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Bayesian 
Network (BN)

analysis to 
establish links



Structural 
Equation Models 

(SEM) to 
confirm links

Regressions Estimate SE Prob>|Z| 

workplaces → [hosp_lag10] 0.0051733 0.0013351 0.0001* 

workplaces → [death_lag20]  -0.001852 0.0012394 0.1350 

workplace_closing → [icu_lag15]  -0.030367 0.0278552 0.2756 

workplace_closing → [hosp_lag10] 0.0667816 0.0270191 0.0134* 

wave → workplaces 3.19686 0.5874759 <.0001* 

wave → workplace_closing 0.0754524 0.0217294 0.0005* 

wave → transport_closing 0.0837236 0.0126287 <.0001* 

wave → transit_stations 2.9688032 0.4265175 <.0001* 

wave → [icu_lag15] 0.1807456 0.0274846 <.0001* 

wave → [hosp_lag10] 0.2486583 0.0245819 <.0001* 

wave → [death_lag20] 0.4204896 0.1221507 0.0006* 

wave → school_closing  -0.316598 0.0169194 <.0001* 

wave → retail_and_recreation 3.7666174 0.59323 <.0001* 

wave → residential  -1.129711 0.2063731 <.0001* 

wave → international_movement_restrictions 0.0842087 0.0199013 <.0001* 

wave → internal_movement_restrictions 0.0676107 0.0158063 <.0001* 

wave → grocery_and_pharmacy 5.10812 0.5543045 <.0001* 

wave → gatherings_restrictions 0.3068871 0.0409729 <.0001* 

transport_closing → [icu_lag15] 0.1455176 0.0273859 <.0001* 

stringency_index → [icu_lag15] 0.0067435 0.0038163 0.0772 

stay_home_restrictions → [hosp_lag10] 0.0472529 0.022111 0.0326* 

[icu_lag15] → [death_lag20] 1.1659765 0.2939227 <.0001* 

[hosp_lag10] → [death_lag20]  -2.089182 0.410195 <.0001* 

retail_and_recreation → [hosp_lag10]  -0.005147 0.0014207 0.0003* 

residential → [hosp_lag10] 0.013011 0.004218 0.0020* 

parks → [hosp_lag10] 0.0019993 0.0004296 <.0001* 

international_movement_restrictions → [icu_lag15] 0.0630446 0.018092 0.0005* 

internal_movement_restrictions → [icu_lag15] 0.1338373 0.0667171 0.0449* 

internal_movement_restrictions → [hosp_lag10] 0.230179 0.0574105 <.0001* 

internal_movement_restrictions → [death_lag20] 0.5626452 0.1869919 0.0026* 

grocery_and_pharmacy → [hosp_lag10] 0.000544 0.0008651 0.5294 

gatherings_restrictions → [icu_lag15]  -0.063505 0.0407235 0.1189 

gatherings_restrictions → [hosp_lag10]  -0.061278 0.035522 0.0845 

gatherings_restrictions → [death_lag20]  -0.141549 0.0740964 0.0561 

Covariances Estimate SE Prob>|Z| 

behave ↔ health  -24.47497 8.5668423 0.0043* 

grocery_and_pharmacy ↔ retail_and_recreation 87.867134 9.2979598 <.0001* 

residential ↔ workplaces  -10.21344 1.4937324 <.0001* 

stay_home_restrictions ↔ 

internal_movement_restrictions 

0.7703725 0.0643261 <.0001* 

stringency_index ↔ internal_movement_restrictions 8.9560929 0.7747634 <.0001* 

stringency_index ↔ stay_home_restrictions 8.8102202 0.7537571 <.0001* 

stringency_index ↔ transport_closing 3.708656 0.3479073 <.0001* 

workplaces ↔ parks  -275.3571 24.166104 <.0001* 
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Deaths Hospitalizations

Closed
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DeathsDeaths Hospitalizations

Open
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Provides “what  if” scenario 
on international transportations

(airports)

Closed

Open

Validation of method
by applying models to two

Different countries
MobilityMobilityMobility

Health
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Extract – Transform – Load (ETL)
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https://link.springer.com/article/10.1007/s10845-021-01817-9
https://www.taylorfrancis.com/books/mono/10.1201/9780429292835/prag
matic-programmer-machine-learning-marco-scutari-mauro-
malvestio?context=ubx&refId=4c1ab861-6c68-40d7-be0f-6cf3717fe7e6

https://link.springer.com/article/10.1007/s10845-021-01817-9
https://www.taylorfrancis.com/books/mono/10.1201/9780429292835/pragmatic-programmer-machine-learning-marco-scutari-mauro-malvestio?context=ubx&refId=4c1ab861-6c68-40d7-be0f-6cf3717fe7e6
https://www.taylorfrancis.com/books/mono/10.1201/9780429292835/pragmatic-programmer-machine-learning-marco-scutari-mauro-malvestio?context=ubx&refId=4c1ab861-6c68-40d7-be0f-6cf3717fe7e6
https://www.taylorfrancis.com/books/mono/10.1201/9780429292835/pragmatic-programmer-machine-learning-marco-scutari-mauro-malvestio?context=ubx&refId=4c1ab861-6c68-40d7-be0f-6cf3717fe7e6
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