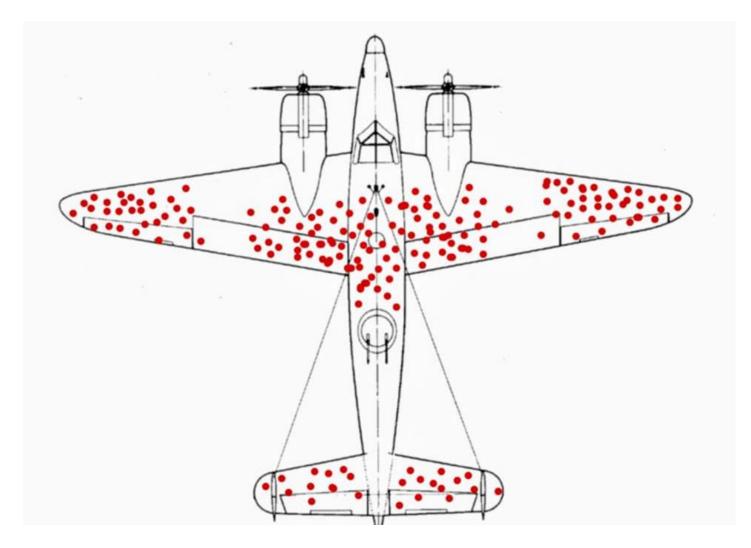
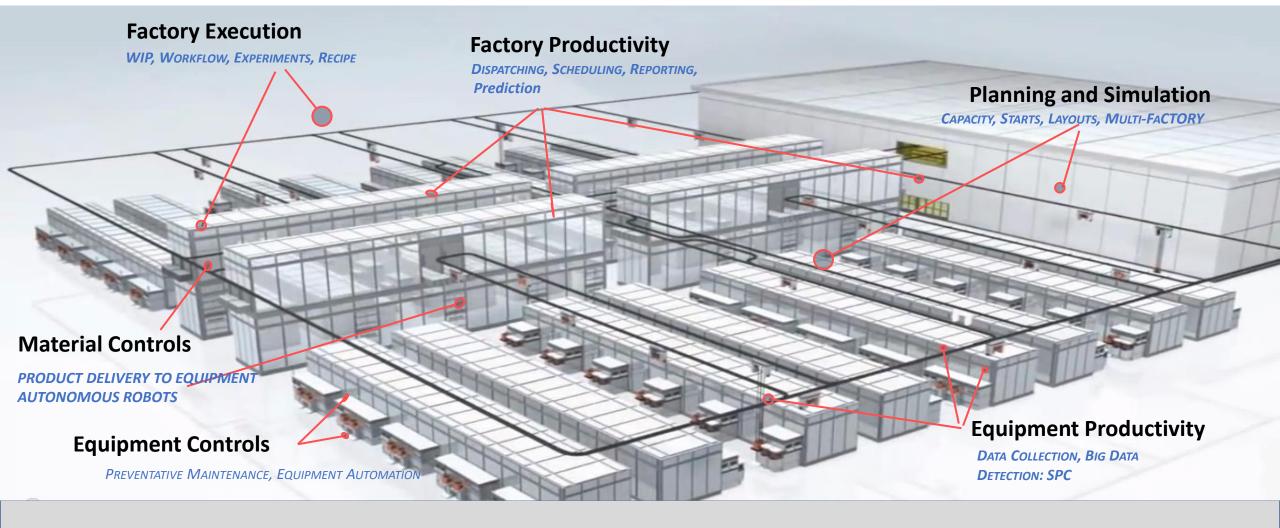

A Biomed Data Analyst Training Program

Data types and data integration


Professor Ron S. Kenett



www.google.com/maps

Factory Execution

Factory Productivity

Planning and Simulation

Material Controls

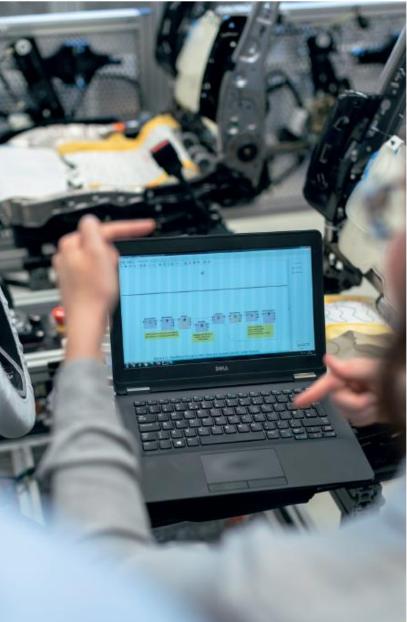
Equipment Productivity

Equipment Controls

Data and the Fourth Industrial Revolution

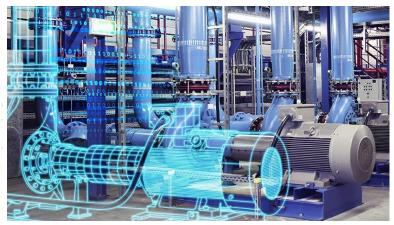
Ron S. Kenett and Shirley Y. Coleman outline the roles played by data and statistics in "Industry 4.0", from monitoring manufacturing processes to the building of "digital twins"

he word "manufacturing" conjures images of galleries of machines running day and night, maybe with rows of workers adjusting or sifting and sorting. What is missing from these mental images, though, are the sensors embedded in each of those machines, collecting data continuously on different aspects of production, transmitting that data to analytics computer packages, and - at the end of it all - a statistician monitoring the outputs in an effort to understand what is going on and to make sure things are working at their very best.


There is a whole world of data analytics based on statistics and artificial intelligence going on behind the scenes in manufacturing plants all over the world. In this article we aim to give some insight into what goes on and why it is important.

Monitoring and adjusting

continuous measurements such as temperature, flow rate, colour and purity between different parts of the production process.


- 2. Flexible manufacturing capabilities – such as 3D printing – that can efficiently produce batches of products to order.
- Data analytics, including statistical analysis, machine learning and artificial intelligence that powers industry with the capability to control and optimise processes.

Consider a hypothetical scenario. You are the operations manager of a company manufacturing medical devices. The Covid-19 pandemic creates a worldwide shortage of ventilators and your company has recently transformed itself to meet Industry 4.0 standards. As a result, you can predict operating

Digital Twin

https://academic.oup.com/pnasnexus/article/1/3/pgac125/6673789

Israel Journal of Health Policy Research

Home About <u>Articles</u> Submission Guidelines

https://academic.oup.com/pnasnexus/article/1/3/pgac125/6673789

Perspective Open Access Published: 20 April 2022

The role of statisticians in the response to COVID-19 in Israel: a holistic point of view

Itai Dattner, Reuven Gal, Yair Goldberg, Inbal Goldshtein, Amit Huppert, Ron S. Kenett, Orly Manor, Danny

Pfeffermann, Edna Schechtman, Clelia di Serio & David M. Steinberg

https://rdcu.be/cLMKZ

https://ijhpr.biomedcentral.com/articles/10.1186/s13584-022-00531-y

Qualitative Data

• Measurements that do not exist on any naturally occurring numerical scale; they are classified into categories.

Nominal

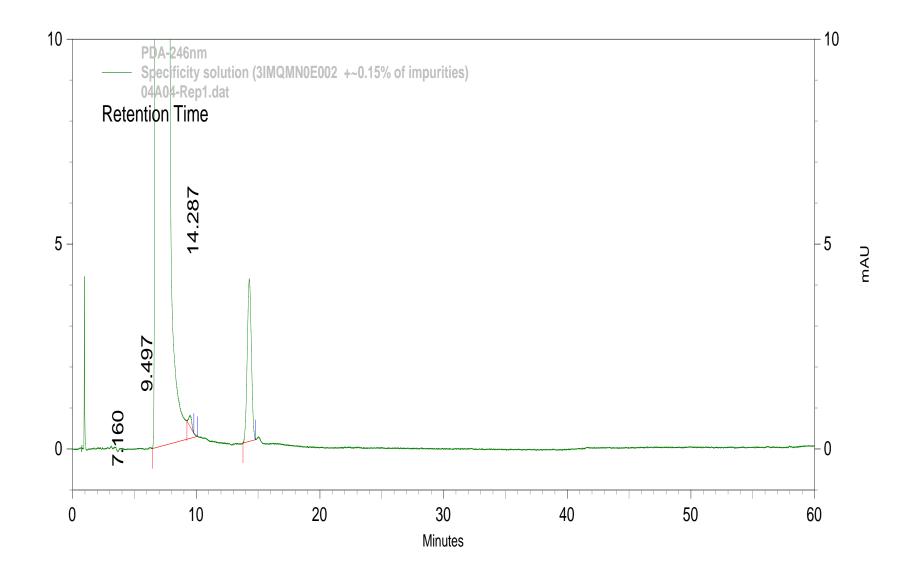
Nominal data is categorical data that has no order or ranking. Examples include: eye color, gender, country of origin, etc.

Nominal data can be represented by numbers, but the numbers do not have any meaning beyond labeling categories.

Ordinal

Ordinal data is categorical data that has a natural order or ranking. Examples include: education level, income level, rating scales (e.g., 1-5), etc. Ordinal data can be represented by numbers, and the numbers have meaning in terms of their rank, but the intervals between them are not necessarily equal

Interval and Ratio Data

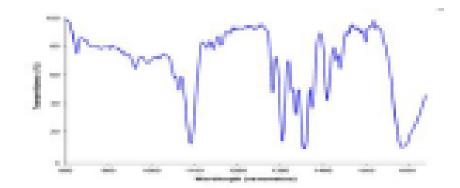

Interval data is numerical data that has equal intervals between values, but no true zero point. Examples include: temperature (in Celsius or Fahrenheit), years (e.g., 1950, 2000, etc.), etc.

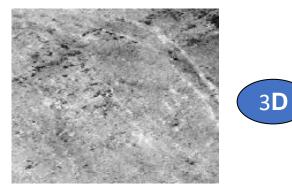
Interval data can be added, subtracted, and averaged, but it doesn't make sense to multiply or divide them.

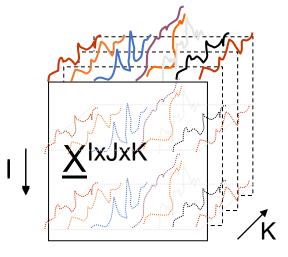
Ratio data is numerical data that has equal intervals between values and a true zero point. Examples include: height, weight, distance, age, etc.

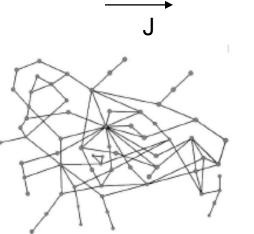
Ratio data can be added, subtracted, multiplied, and divided

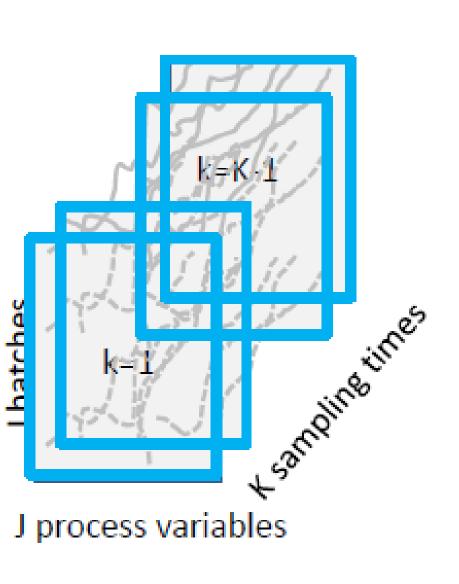
Quantitative data

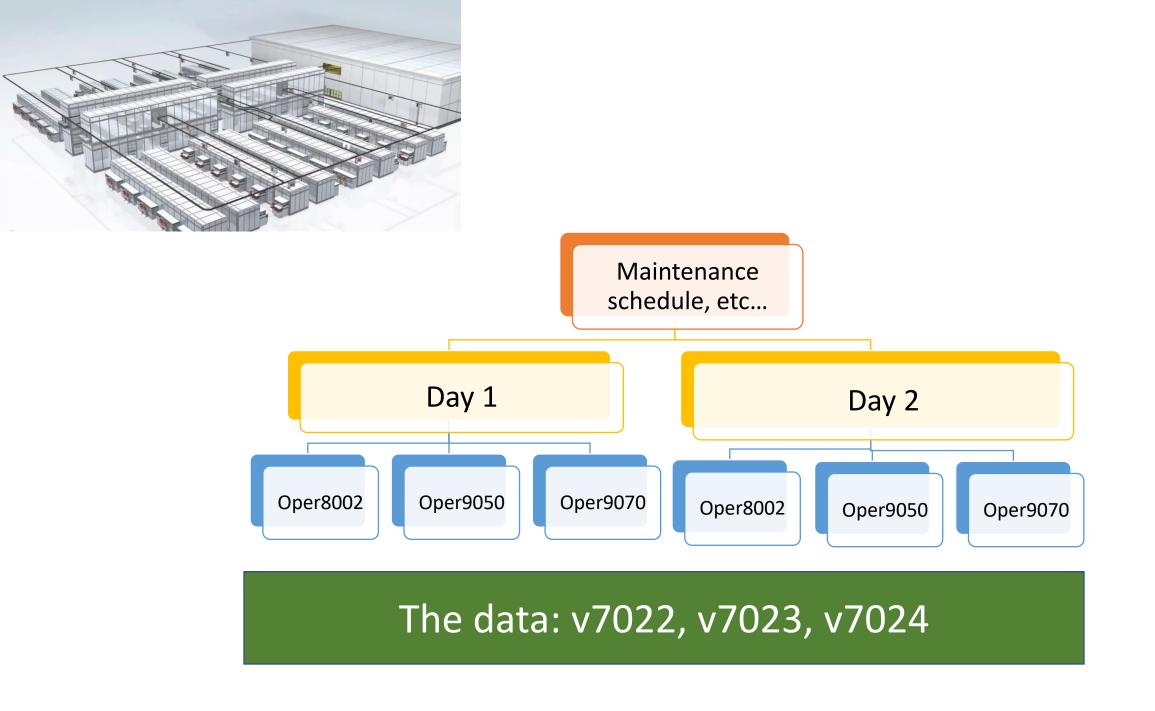


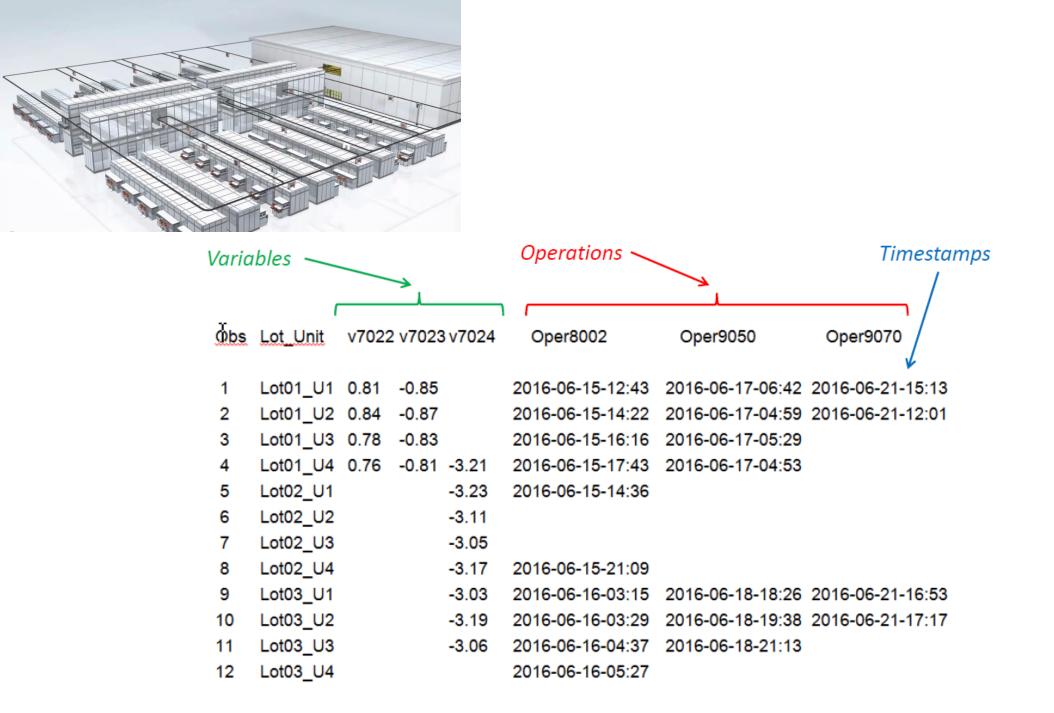

10

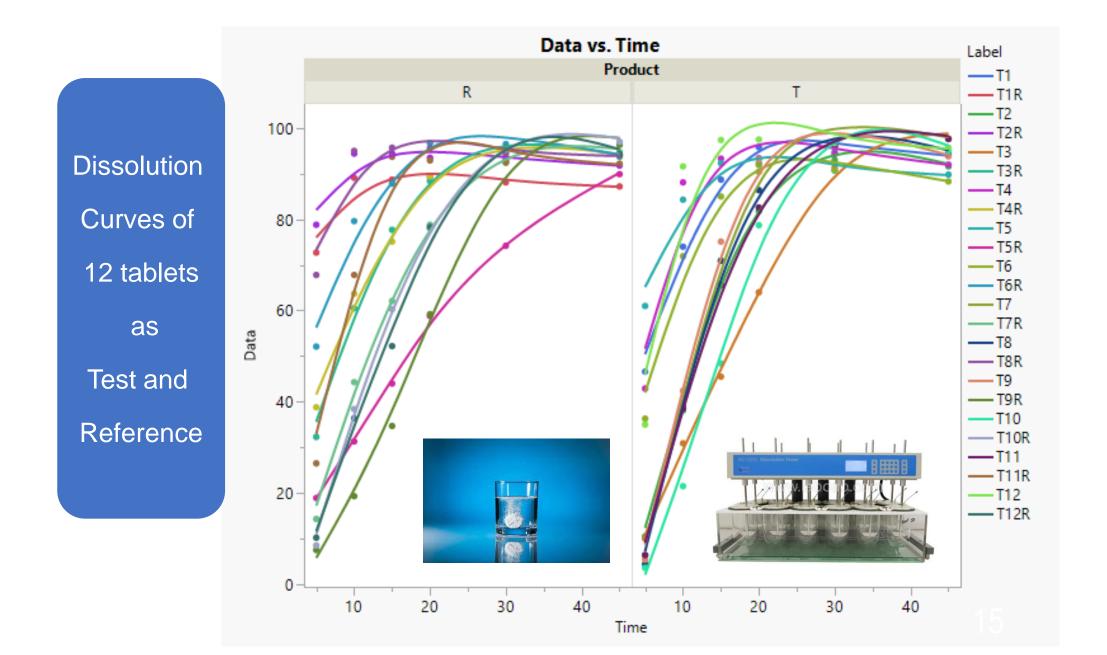

D

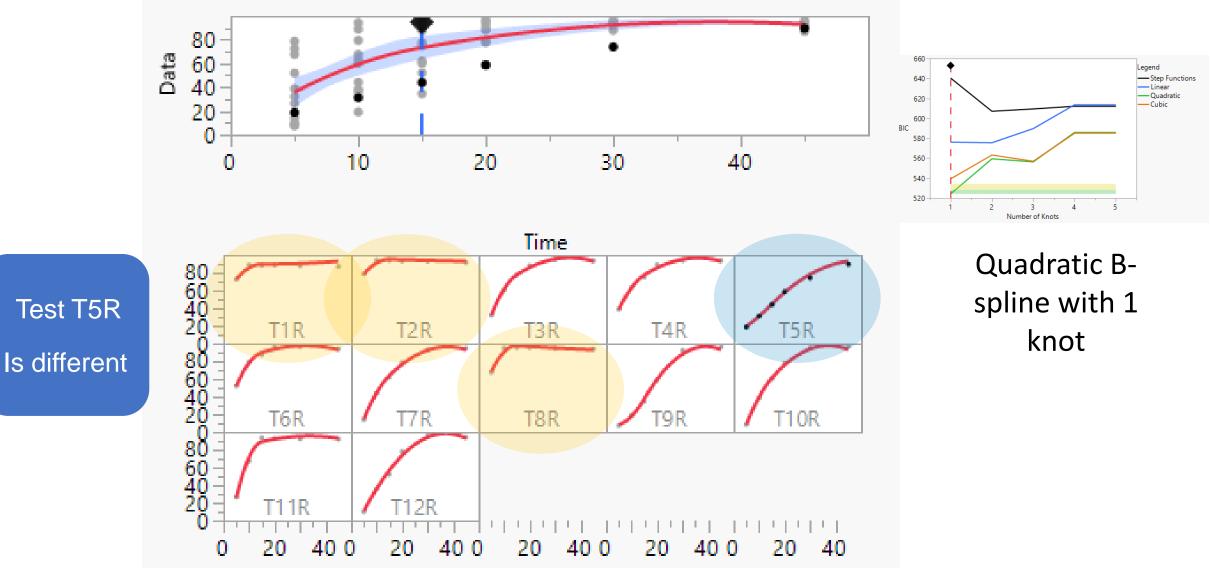

Unstructured

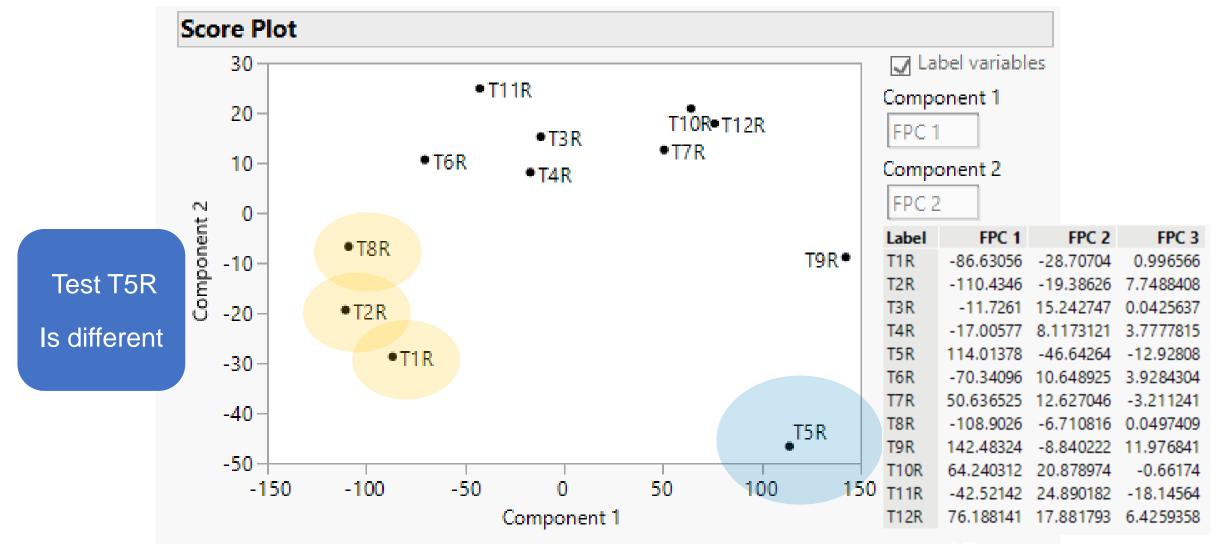


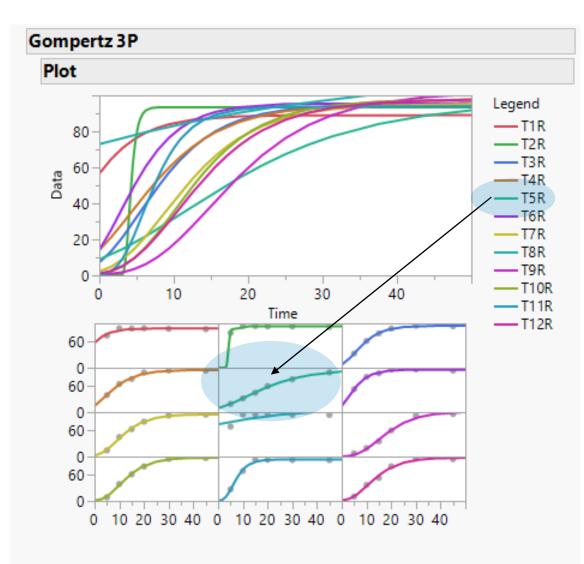



	71	DO:	GD C	IL ALES	h B.			
W-I		- 1 m		1	INT		11.	1.1
A. Burning	Contra blas	100	Hard .	Sugar in	are free	- Inge	port -	passer of
14.100	ter in	1000	nor	in the	trat	Acres	780.0	A.S.
12 No. 1088	200		See. 1	1000 200	Sec.	strew.	HOAR N	840 N
1991M	- A		10.11	a marine	Ser.		der.	20
" an other	1. 10 Mar 1. 10	2.51	552	ALC: NO.	7.00		the Taylor	Aug +
A.L. and Bill	1.30	OCE	100 10	7. 188 C	200.00	and.	18. 2	26.7 20
and in the second	24.1 11		14.20	Anorras	-Sea		14.9	2894
1-10 P. 14	-		4.44.11	Service and			Post a	Star 1.
Acres 10	10 2.3		1352	Carriero		1000	in /	Acre
1 Same	45.5 1.000		100	A THE COM	CAPITY.	1000	140	about.
374				and the		100.00	Page 245	Sec. 8
- PAGEPORT	ter St	5 L	12a	a mar and		1.9d	Mr. St.	Ast.
er in	See 194		sheen 1	and the state			NIS	24
1 6 1001	and the fit		10.04	30 E.			deres .	- 1 T Ba
Survey and	Sec. 1204	4.4	444.7	Serge .	10.44	5.0	1040	- Mail ()
	20. 12		327	Chines.			100	1257
- 17 78 Cm	Sun- all		1225	4000		1	A	100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 C. M. 1 1 M. M.	CC 11	1000	Sec. as	1.000	1 × 1	AVA. C	Ser. T
- PROFESSION COL	6		in.	1.	1 24.9			200
Stort sales		5.11	442.0	1 x ta	1.89.3	and a	1000	1415
derives .	cin las		apr	- A 223	221		Anna	
and the second second	1.11		ALC: NO					
1. Va. 14	Se 63	100	27	-				
Tur la Che	Sec. Low	ero au	March 1					
10170-1771 - L	Real Walter	10	Ca. 3.	1				
COMPANY MAR	100 ALC 2.50		mer.					
Same in a	in the	100	Numi al	1				
	Ani In	1.1	404 37	Sec. and	C	100 C		100 m
Diversite .	10-14-1 JAN	× 11	Same.	67.54	Sec. 1.	1 100 100	10 10 10	100
			A	32.75	1.1	60.00	Thing	Sim.
and and	Same As		122					
- marine 2	1000 Jack 100	10.1	diam'r	5.13		74-5766	. Carrier	16 60
1102 1000	222 - Dawn	1.1		100		Section.	E den	1.1.
Parts derives	States de	- H	2%					
Autor and	ar dans		diam'r.	13.4	·	3902-Abs	All figs	a desired
Polar Strate			100.00	. Por		enno	100	diam'
THE PALLA	1 1 2 100		1000	20.4				
Darmed me	- 6m m		14	1. 1. 1. 1	1 . 13	AN 16	30.17 .	and 12


Search

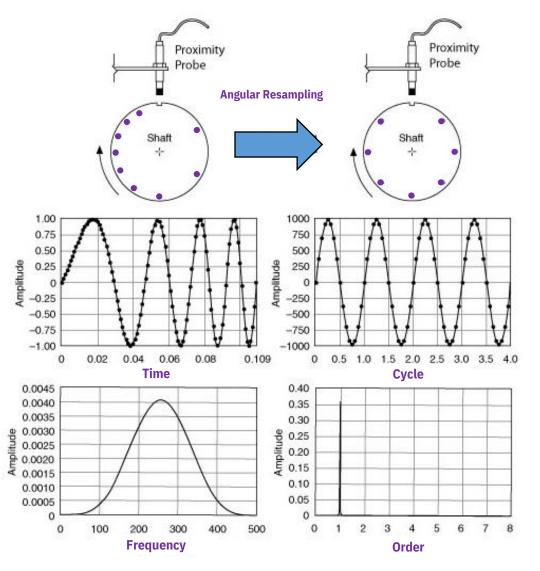

https://www.youtube.com/watch?v=g4gxLG2IQeo




Functional Data Analysis and Nonlinear Regression Models Pros and cons, and their combination: A JMP 17 update

Prediction Model

$$a \cdot Exp\left(-Exp\left(-b \cdot (Time - c)\right)\right)$$


a = Asymptote b = Growth Rate c = Inflection Point

Nonlinear model

			•		
	Label	Asymptote	Growth Rate	Inflection Point	
T1R 1	T1R	89.072244404	0.2185624809	-3.625806907	
2	T2R	93.480399791	1.76758908	4.0002987548	
3	T3R	95.117117858	0.1732544061	5.4556204689	Prediction Model
4	T4R	95.393703545	0.1508168903	4.2794474042	
T5R 5	T5R	97.047132531	0.0750862269	11.579937352	a • Exp (- Exp (- b • (Time
6	T6R	95.886344295	0.2282099484	2.8239229453	()
7	T7R	95.608682945	0.1500953986	8.8540204547	a = Asymptote
8	T8R	113.26922091	0.0355126872	-23.11022674	b = Growth Rate c = Inflection Point
9	T9R	102.16502758	0.1201635618	14.766362121	
10	T10R	97.965019617	0.1562304451	10.087517474	Nonlinger
11	T11R	94.032980681	0.3037771891	5.8648755174	Nonlinear mo
12	T12R	97.966870258	0.1439240958	10.549169714	

Angular Resampling of Ball Bearing Engine

20

Text Data – Medical Device Inspections

.

• Data: 27,594 inspection observations from fda.gov.

• **Objective**: Determine the most frequent themes in inspection observations for medical devices.

The Data

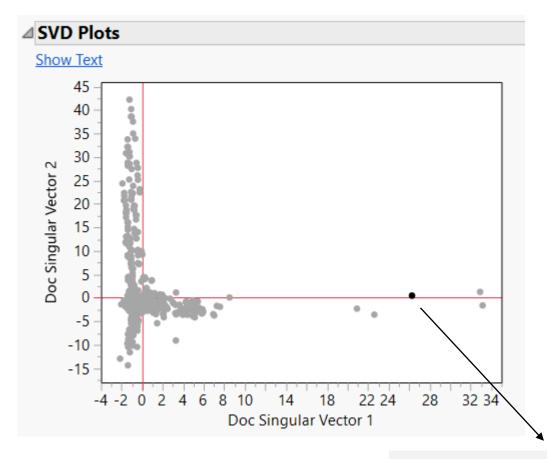
CFR - Code of Federal Regulations

Kitations-06-12-Center-Devices - JMP	Pro		- D >	×
<u>File Edit Tables Rows Cols D</u> OE	<u>A</u> nalyze <u>G</u> raph	T <u>o</u> ols Add-I <u>n</u> s <u>V</u> iew <u>V</u>	<u>W</u> indow <u>H</u> elp	
📴 🦢 🧭 🖬 X 🖬 🛝 🖕 ! 🚍 🖩		¥		
♥ Citations-06-12-Center-Devices	<			Γ
Distribution		CFR	Long Desc	
	1	CFR 820.198(a)	Complete complaint files are not maintained.	1
	2	CFR 820.75(a)	A process whose results cannot be fully verified by subsec	μ
	3	CFR 820.100(a)(1)	The corrective and preventive procedures addressing the	а
Columns (8/1)	4	CFR 820.198(a)	Complaint handling procedures for complaints have not b	Эe
Firm Name	5	CFR 820.22	Quality audits were not conducted to verify that the quali	ty
L City	6	CFR 820.70(b)	Procedures for changes to processes were not established	ł.
state	7	CFR 820.70(g)(1)	Schedules for the adjustment, cleaning, and other mainter	ni
Country	8	CFR 820.75(a)	Process validation activities and results have not been doo	cu
🚄 Insp End Date	9	CFR 820.80(b)	Procedures for acceptance or rejection of incoming produ	ıc
💼 Center	10	CFR 820.80(d)	Procedures for acceptance or rejection of finished device	р
CFR CFR	11	CFR 820.22	Procedures for conducting quality audits were not comple	et
Long Desc	12	CFR 820.75(a)	Process validation activities and results have not been full	у
	13	CFR 820.100(a)	The procedures for implementing corrective and preventi	Vŧ
	14	CFR 820.100(a)(1)	Appropriate sources of quality data are not adequately an	a
Rows	15	CFR 820.100(a)(3)	Not all of the actions needed to correct and prevent the re	ec
All rows 27,594	16	CFR 820.180(b)	Required records are not retained for at least 2 years from	n t
Selected	17	CFR 820.20	Management with executive responsibility has not ensure	d
Excluded 0	18	CFR 820.22	Procedures for conducting quality audits were not comple	et
Hidden 0	19	CFR 820.30(a)	Procedures to control the design process of the device we	en
Labelled 0	20	CFR 820.30(d)	Design outputs that are essential for the proper functioning	
	21	CFR 820.30(e)	The design review results, including identification of the d	le
	22	CFR 820.30(f)	Design verification did not confirm that the design output	
		<	>	

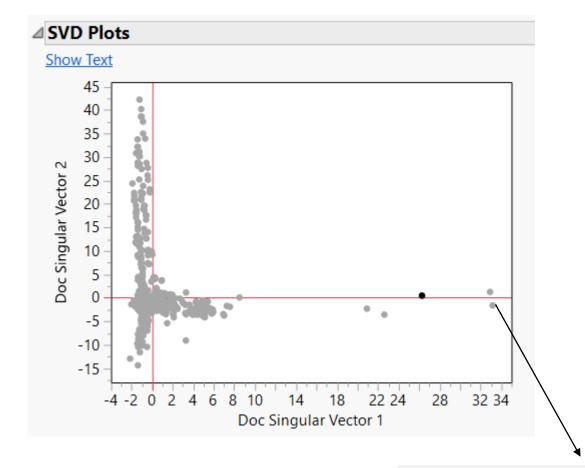
_

 \times

Number Number	er Total es Tokens		Number of Non- empty Cases	Portion Non- empty per Case		
1062 2759		15.6358	27594	1.0000		
⊿ Term and Phr	ase Lists					
Term	Count		P	hrase	Count	Ν
procedures	12817		a a	dequately established	3204	2 🔨
established	8404			orrective and preventive	2913	3
device	6406			uality system	2163	2
quality	5694			orrective and preventive action	1882	4
adequately	5049			reventive action	1882	2
design	4010			onconforming product	1328	2
documented	3931			uality audits	1247	2
implemented	3353			evice history	1080	2
product	3280			evice master record	1053	3
corrective	3156			evice master	1053	2
preventive	2913			naster record	1053	2
process	2818			valuating complaints	1037	2
ensure	2538			uality problems	987	2
system	2396			rocedures for receiving	981	3
complete	2377			eviewing and evaluating complaints	977	4
activities	2291			eviewing and evaluating	977	3
control	2277			ritten mdr	977	2
action	2189			orrective and preventive actions	935	4
complaints	2179			reventive actions	935	2
maintained	2071			rocedures for receiving reviewing	934	4
requirements	2039			eceiving reviewing and evaluating	934	4
record	1974			eceiving reviewing	934	2
records	1895			omplaint handling procedures	929	3
complaint	1808			omplaint handling	929	2
results	1791		h	andling procedures	929	2
defined	1778			reventive action activities	911	3
history	1703		× a	ction activities	911	2 ~


☆ 🖾 📃 🔻

Topic Words Topic1 Topic2 Topic3 Topic4 Topic5 Term Score <th

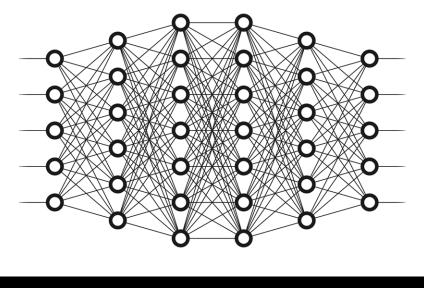

renn	JUIC	renn	JUIE	renn	JUIE	renn	JUIE	renn	JUIE
serious	0.23412	problems	0.28969	disclosure	0.26797	trustworthy	0.33022	system	0.28155
injury	0.23397	nonconforming		financial	0.25905	generally	0.33022	fulfilling	0.26882
death	0.23252	causes	0.22648	certification	0.24059	paper	0.33022	objectives	0.25451
marketed	0.23166	actions	0.21586	statement	0.21569	reliable	0.32189	effective	0.25435
suggests	0.23065	recurrence	0.20936	participating	0.20885	equivalent	0.29324	quality	0.24894
30	0.23041	corrective	0.20896	allow	0.20645	electronic	0.28572	verify	0.24870
becoming	0.23011	correct	0.20680	submit	0.20242	limitation	0.25209	regular	0.24778
aware	0.22950	needed	0.19748	obtained	0.20230	trail	0.25208	prescribed	0.24778
reasonably	0.22545	sources	0.19630	commitment	0.19676	access	0.21608	sufficient	0.21578
days	0.21984	preventive	0.19380	includes	0.19389	audit	0.19973	intervals	0.21549
within	0.21638	prevent	0.18391	year	0.19187	check	0.19182	internal	0.20033
recur	0.18705	parties	0.17575	signed	0.18538			audits	0.19772
malfunctioned	0.18705	dissemination	0.17337	investigator	0.16801			conducted	0.16045
malfunction	0.18705	data	0.16424	sponsor	0.16683				
likely	0.18705	including	0.15170	agreement	0.16625				
contribute	0.18705	-		accurate	0.16524				

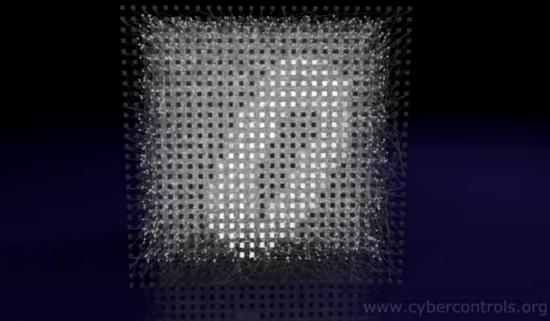
submitted 0.18482

Topic6	Тор	ic7	Topic	В	Topic9		Topic10			
Term Score	Term	Score	Term	Score	Term	Score	Term	Score		
subsequent 0.3202 whose 0.3202 inspection 0.3116 test 0.3042 verified 0.3021 according 0.2852 validated 0.2720 fully 0.2494 results 0.2214 approved 0.1857 process 0.1568	i reported correction fda writing reduce posed i risk fd&c	0.28786 0.27381 0.26683 0.26448 0.24325 0.23956 0.23956 0.23956 0.19181 0.17168 0.16817 0.16723 0.16723 0.16723	batch manufactured dewice history record accordance master regulation lot records code mark systems number	0.24329 0.23190 0.23184 0.21879 0.20094 0.19734 0.19553 0.19455 0.19144 0.18818 0.16649 0.15537 0.14889 0.14876 0.14709	provides procedure reporting event internal standardized determining medical events written communication include criteria timely	0.26933 0.26067 0.25708 0.21770 0.20418 0.19515 0.19303 0.18473 0.16167 0.15374 0.14876 0.14163 0.14143 0.14027	effect adverse learning prepared unanticipated working first 10 effects storage damage rooms stock	0.25470 0.25123 0.24373 0.24040 0.23452 0.23179 0.22702 0.20946 0.15673 0.14708 0.14302 0.13304 0.13244		

An MDR report was not submitted within 30 days of receiving or otherwise becoming aware of information that reasonably suggests that a marketed device may have caused or contributed to a death or serious injury. [127]

An MDR report was not submitted within 30 days of receiving or otherwise becoming aware of information that reasonably suggests that a marketed device has malfunctioned and would be likely to cause or contribute to a death or serious injury if the malfunction were to recur. [271]


Deep learning

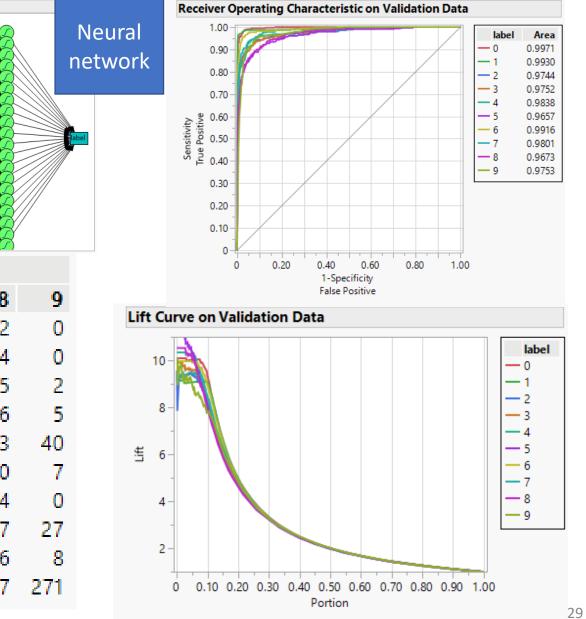

MNIST

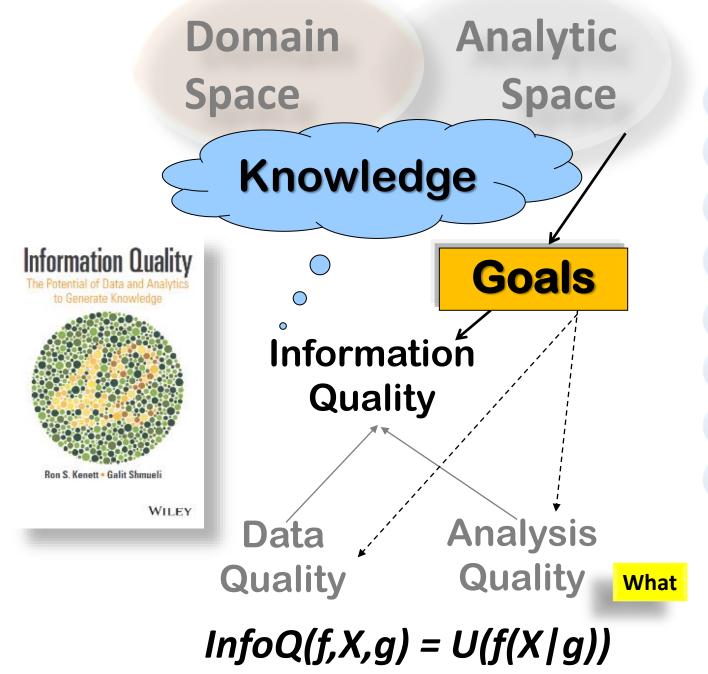
Modified National Institute of Standards and Technology

0000000000 n \boldsymbol{n} Λ ß 22 2 22 2 2 9 2 2 2 3 3 .⊣ -5 5 5 5 5 5 Ð 9

Contains 60,000 training images and 10,000 testing images

强 mnist - JMP Pro

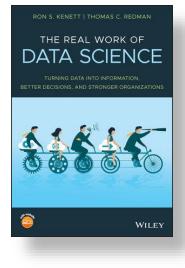

<u>File Edit Tables Rows Cols DOE Analyze Graph Tools Add-Ins View Window Help</u>


: 🖼 🚰 🖂 | 🔏 🖦 🏝 | 🕾 🛆 🧅 : 🗰 📾 🖶 🗠 ≽ 🥐 🖕

💌 mnist 🛛 👂	۹ ا																				
Source		label	pixel0	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	pixel10	pixel11	pixel12	pixel13	pixel14	pixel15	pixel16	pixel17	pi
	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	3	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Columns (785/1)	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
م	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 label 📃 🔨	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
/ pixel1	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
pixel2	9	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
⊿ pixel3 ⊿ pixel4	10	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
∠ pixel1	11	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel6	12	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel7	13	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
pixel8	14	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
⊿ pixel9 ⊿ pixel10	15	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
<pre>_ pixel10</pre>	16	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
🚄 pixel12	17	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
/ pixel13	18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
pixel14	19	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
⊿ pixel15 ⊿ pixel16	20	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
A = 1	21	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Rows	22	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
All rows 10,000	23	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Selected 0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Excluded 0 Hidden 0	25	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Labeled 0	26	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	27	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	28	<																			>
		_			_						_										V

- 🗆 🗙

Measure	es			Value	2	Dia	Diagram					
Generali	zed RS	quare	0.9	79183	9							
Entropy		•	0.7	57322	9					Ì		
RASE			0.3	65598	3							
Mean Ab	os Dev		0.1	904833	3		784					
Misclass	ificatio	n Rate	0.1	50988	6		Featu	res 🧧				
-LogLike	lihood	I	186	64.1996	6					/		
Sum Free	7			333	8							
Confusio	n Matr	ix										
Actual				Pre	dicte	d Cou	nt					
label	0	1	2	3	4	5	6	7	8			
0	315	0	0	1	0	6	6	1	2			
1	0	352	2	0	3	0	1	3	4			
2	9	1	290	16	6	2	7	1	15			
3	6	4	11	278	1	19	2	5	6			
4	1	0	5	0	264	1	7	2	3			
5	9	4	7	16	5	228	4	2	20			
6	6	2	8	0	7	6	298	4	4			
7	2	5	4	4	3	1	2	292	7			
8	2	8	15	11	5	17	2	3	246			
9	2	0	3	2	23	6	2	16	7	4		



InfoQ

- 1. Data resolution
- 2. Data structure
- 3. Data integration
- 4. Temporal relevance
- 5. Chronology of data and goal
- 6. Generalizability
- 7. Operationalization

https://link.springer.com/chapter/10.1007/978-3-030-43823-4_1

Joint European Conference on Machine Learning and Knowledge Discovery in Databases → ECML PKDD 2019: Machine Learning and Knowledge Discovery in Databases pp 3–16

Home > Machine Learning and Knowledge Discovery in Databases > Conference paper

The ABC of Data: A Classifying Framework for Data Readiness

Laurens A. Castelijns, Yuri Maas & Joaquin Vanschoren 🖂

https://github.com/gedeck/mistat

Band C (Conceive) Band B(Believe) Band A (Analyze) Band AA (Allow Analysis) Band AAA (Full Readiness)

g

X

U

Information Quality

The potential of a particular dataset to achieve a particular goal using a given empirical analysis method

- A specific analysis goal
 - The available dataset
 - An empirical analysis method
 - A utility measure

InfoQ(f,X,g) = U(f(X | g))

Kenett, R.S. and Shmueli , G. (2014) On Information Quality , *Journal of the Royal Statistical Society, Series A* (with discussion), Vol. 177, No. 1, pp. 3-38. <u>http://ssrn.com/abstract=1464444</u>.

Assessing Information Quality

Assess dimensions versus goal

InfoQ dimensions

- 1. Data resolution
- 2. Data structure
- 3. Data integration
- 4. Temporal relevance
- 5. Chronology of data and goal
- 6. Generalizability
- 7. Operationalization
- 8. Communication

Assess properties

"Quality of Statistical Data" (Eurostat, OECD, NCSES,...)

- Relevance
- Accuracy
- Timeliness and punctuality
- Accessibility
- Interpretability
- Coherence
- Credibility

http://www.nsf.gov/statistics/information-quality.cfm

http://epp.eurostat.ec.europa.eu/portal/page/portal/ver-1/quality/documents/ESQR FINAL.pdf

http://www.oecd.org/std/qualityframeworkforoecdstatisticalactivities.htm

An Italian Case Study

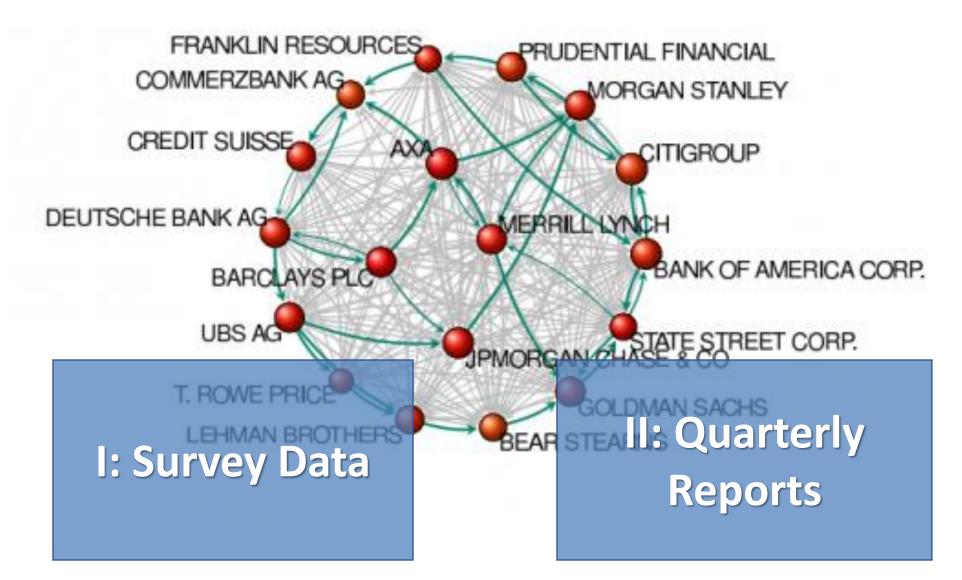
InfoQ(f,X,g) = U(f(X|g))

J Use **Bayesian networks** to model the dependence structure of the variables in the data set and to calculate the conditional rank correlations

Kenett, Ron S., Applications of Bayesian Networks (2021). http://dx.doi.org/10.2139/ssrn.2172713

g: Understand the influence on sales of several variables, such as number of employees, to make predictions and derive diagnostics.

X: combined survey data and individual company performance with data reported to the stock exchange.


U: Sales prediction error in employment policy economic programs

#1 Data Resolution

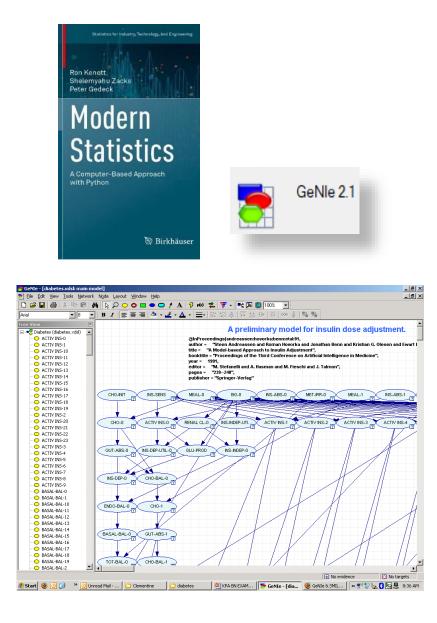
Data collected at the company level. I: Periodic survey waves of self reports II: Quarterly stock exchange reports

Goal: Predict sales using # employees in the context of a regional development plan

#2 Data Structure

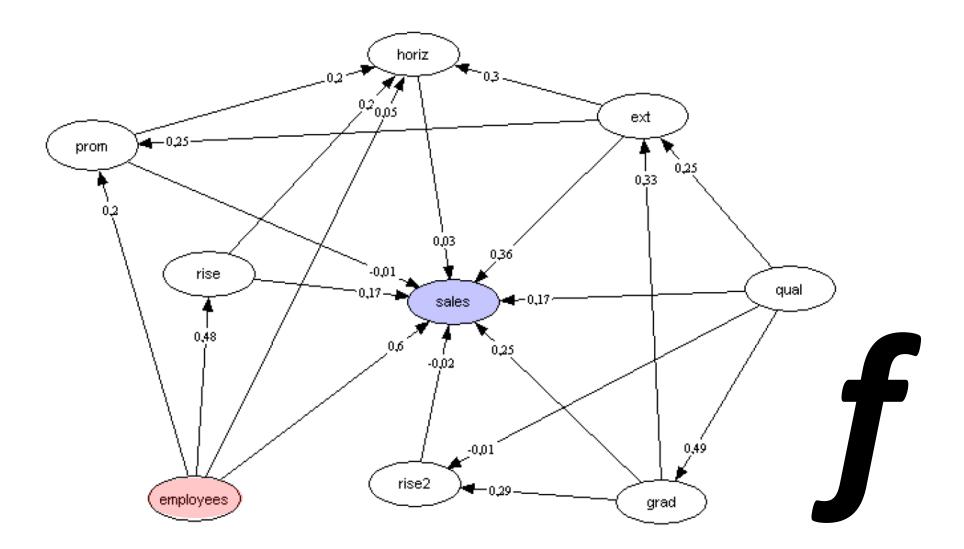
I: The Assolombarda Data

- Assolombarda is an Italian association of about 5,000 firms located in the province of Milan and in other provinces of the north of Italy, and represents manufacturing and service companies.
- The associated firms employ about 300,000 workers locally and several hundred thousands in the whole country.
- Assolombarda periodically collects data through questionnaires sent to the associated firms, in order to gather information about the economic climate, firms' activity and production, and the number and types of employees.
- The data analyzed contains information collected through one of the association surveys in 2007, and it is about 167 firms located in the provinces of Milan and Lodi.


I: The Assolombarda Data

The variables in the dataset are:

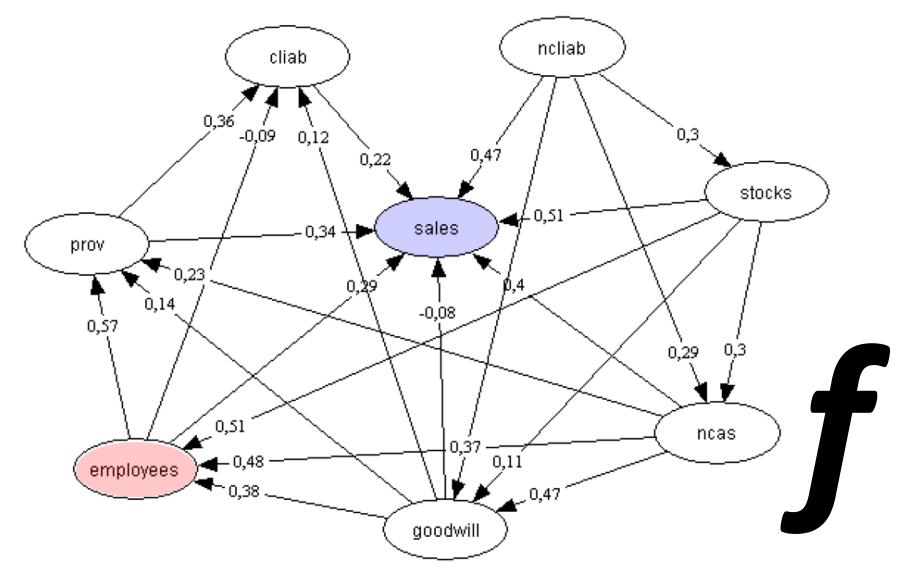
- *sales*: firm annual turnover;
- *emp*: average number of employees;
- *rise*: number of managers receiving wage rise;
- *rise2*: number of managers that will receive wage rise in the following year;
- *prom*: number of employees gaining a promotion;
- *horiz* : number of employees involved in horizontal movements;
- *ext*: number of people employed in the external market;
- *grad*: number of newly-graduated employees;
- *qual*: number of newly-qualified employees.


8.3 Bayesian Networks

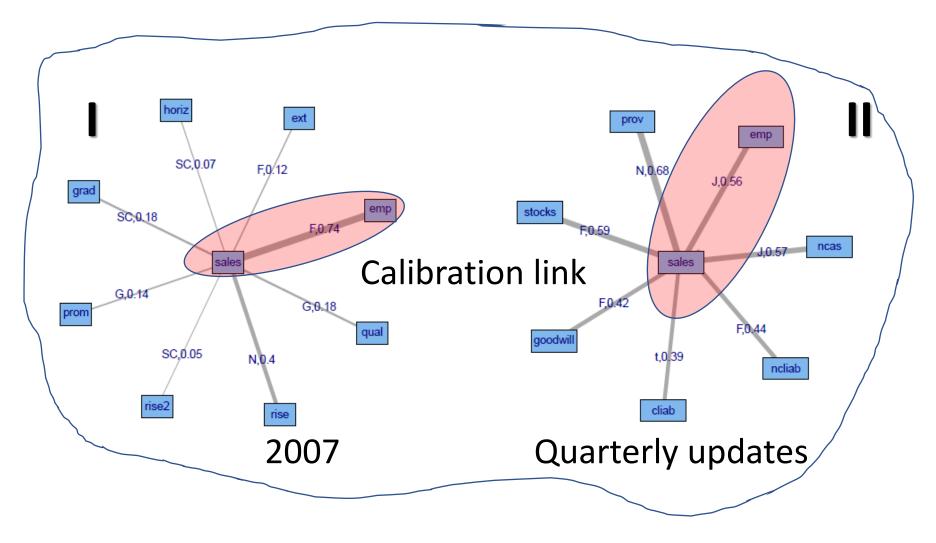
Bayesian networks (BNs) were introduced in Sect. 2.1.6. They implement a graphical model structure known as a directed acyclic graph (DAG) that is popular in statistics, machine learning, and artificial intelligence. BNs enable an effective representation and computation of the joint probability distribution over a set of random variables (Pearl 1985). The structure of a DAG is defined by two sets: the set of nodes and the set of directed arcs; arcs are often also called edges. The nodes represent random variables and are drawn as circles labeled by the variable names. The arcs represent links among the variables and are represented by arrows between nodes. In particular, an arc from node X_i to node X_i represents a relation between the corresponding variables. Thus, an arrow indicates that a value taken by variable X_i depends on the value taken by variable X_i . This property is used to reduce the number of parameters that are required to characterize the joint probability distribution (JPD) of the variables. This reduction provides an efficient way to compute the posterior probabilities given the evidence present in the data

Kenett, Ron S., Applications of Bayesian Networks (2021). http://dx.doi.org/10.2139/ssrn.2172713

I: The Assolombarda Data



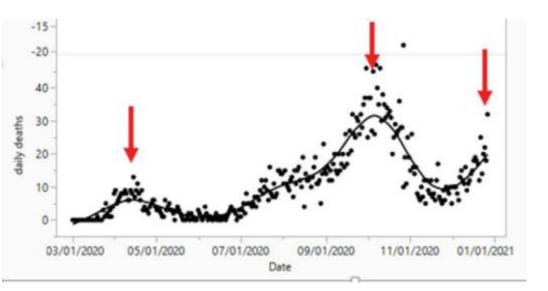
II: The FTSE-MTB Data


The FTSE-MIB is the benchmark stock market index for the Italian national stock exchange and consists of the 40 most-traded stock classes on the exchange. The dataset analyzed here contains information from the balance sheets of the 40 largest Italian firms belonging to the Italian stock market. The variables used in the analysis are:

- *sales*: firm annual turnover;
- *emp*: average number of employees;
- *goodwill*: difference between the balance sheet assets and the sum of intangible assets and equipment at market value;
- *ncas*: non-current financial assets;
- *stocks*: stocks and work in progress;
- *prov*: provisions for liabilities and non-recurring expenses;
- *ncliab*: non-current liabilities;
- cliab: current liabilities.

II: The FTSE-MTB Data

#3 Data Integration

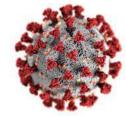

https://libri.unimi.it/index.php/milanoup/catalog/download/73/155/653-1

Citizen Behavior & Health Indicators in Israel During COVID-19: A Systematic Analysis of Data Over Time

Ron S. Kenett¹ and Carmit Rapaport²

¹Samuel Neaman Institute, Technion, and KPA, Israel and University of Turin, Italy – ron@kpa-group.com
²Institute for Regulation of Emergency and Disaster, College of Law and Business and Department of Geography and Environmental Studies, University of Haifa, Israel – carmit.rapaport@gmail.com

International Journal of Environmental Research and Public Health



Article

Integrated Analysis of Behavioural and Health COVID-19 Data Combining Bayesian Networks and Structural Equation Models

Ron S. Kenett ¹, Giancarlo Manzi ², Carmit Rapaport ^{3,4} and Silvia Salini ^{2,*}

- ¹ KPA Group and Samuel Neaman Institute, Raanana 43100, Israel; ron@kpa-group.com
- ² Data Science Research Centre, Department of Economics, Management and Quantitative Methods, University of Milan, 20122 Milan, Italy; giancarlo.manzi@unimi.it
- ³ Department of Geography and Environmental Studies, University of Haifa, Haifa 3498838, Israel; carmit.rapaport@gmail.com
- ⁴ NIRED—National Institute for Regulation of Emergency and Disaster, College of Law and Business, Ramat Gan 5110801, Israel
- * Correspondence: silvia.salini@unimi.it

Goals of Research

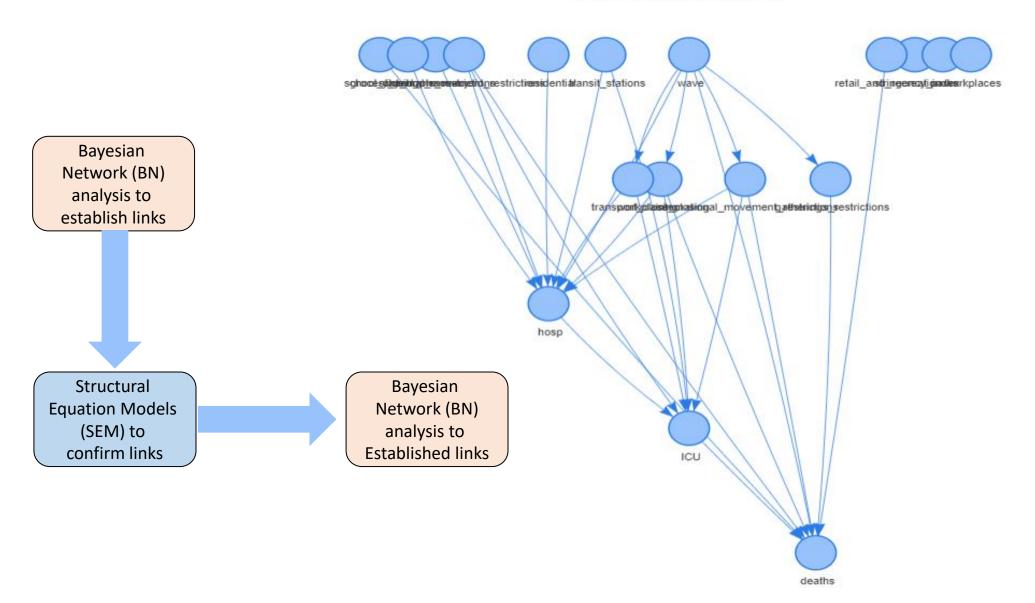
- To assess the impact of pandemic management and mitigation policies on pandemic spread and population activity.
- To examines the effect of mobility restriction measures in Italy and Israel and compares the association between health and population mobility data.
- To provide decision makers a way to conduct scenario analysis to help support pandemic management

Methodology

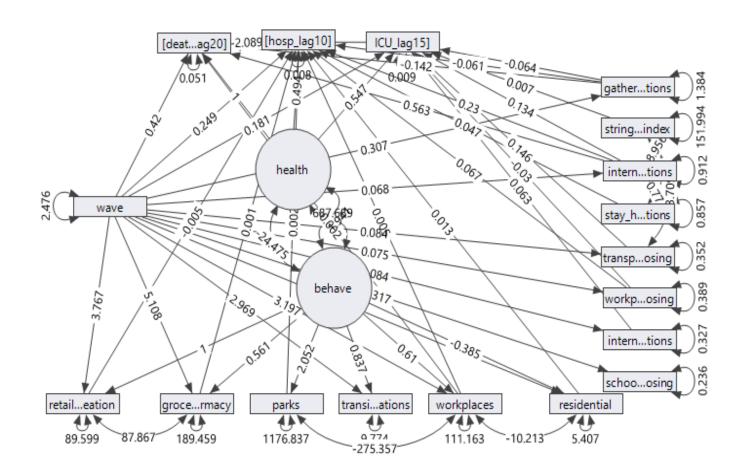
1. **Collect** data on health and population behavior from ministries of health and google mobility

2. Integrate the data using Bayesian networks and determined proper lags using arc strength indicators.

3. **Assess** the derived network structure using confirmatory SEM.

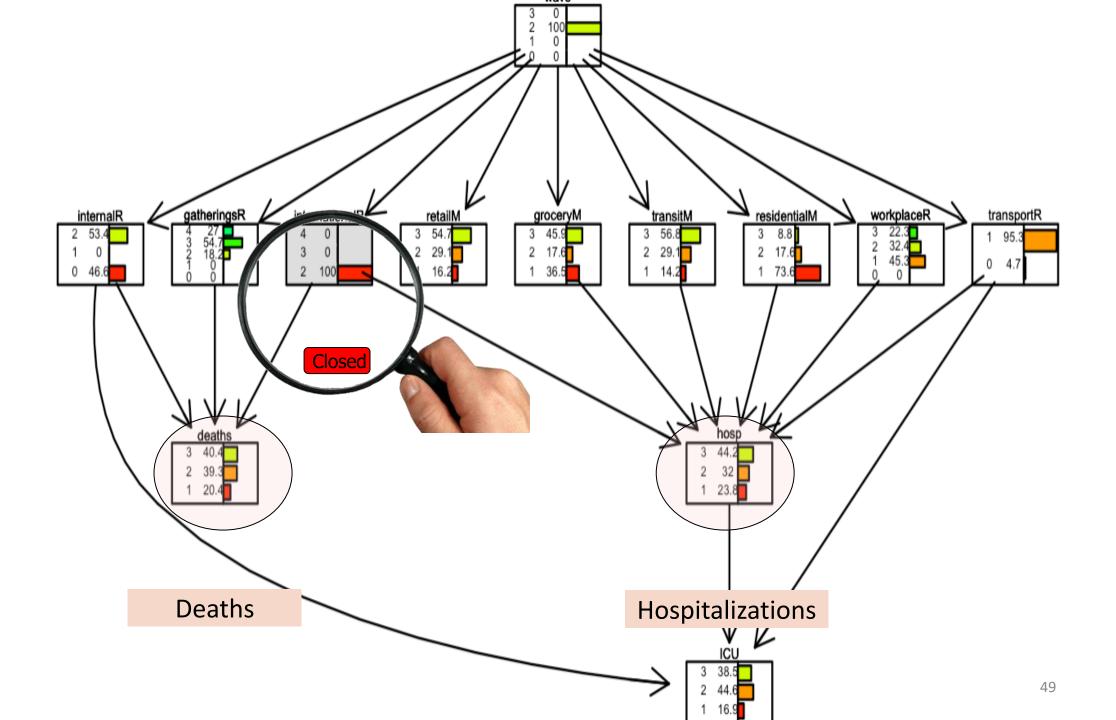

4. **Discretize** the data accounting for local thresholds and use the resulting BNs to assess alternative scenarios. For example: what would be the impact of closing airports?

5. **Calibrate** the data from Italy and Israel using "wave" time windows and using country-based thresholds.

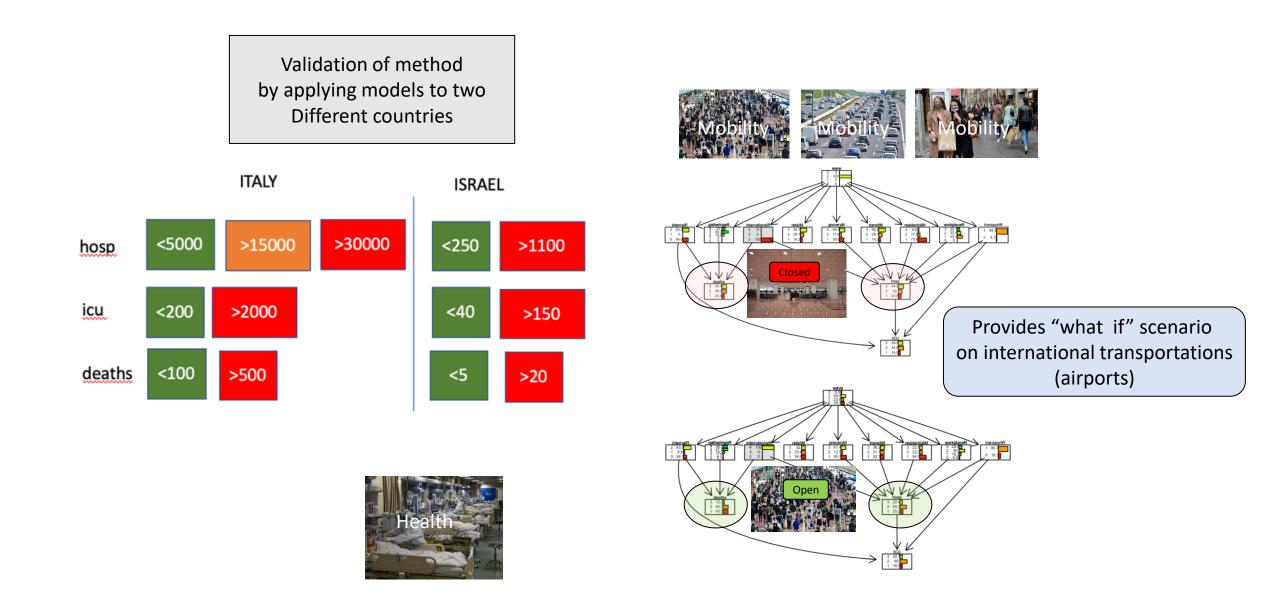

6. **Compare and contrast**: The fact that we did this analysis in two countries proved very effective from a methodology viewpoint.

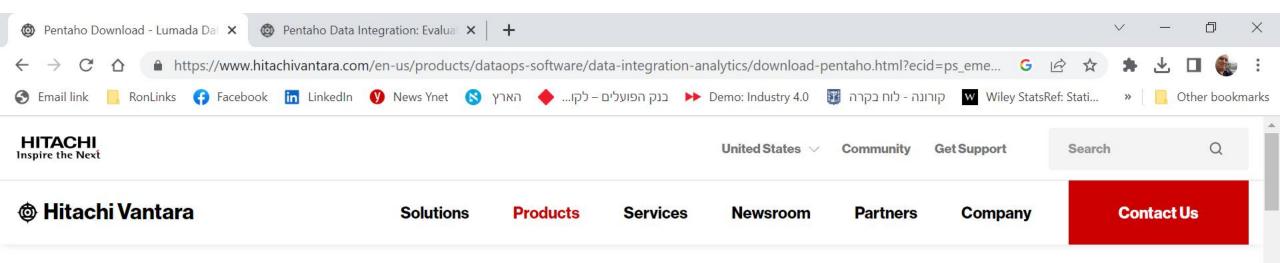
Covid19 Israel

Monitoring of emergency



Hosp Lag 10, ICU Lag 15, Deaths Lag 20




Structural
Equation Models
(SEM) to
confirm links

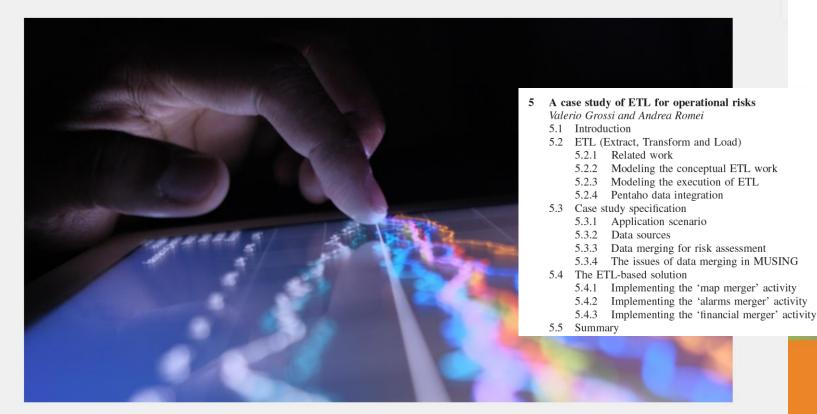
Regressions	Estimate	SE	Prob> Z
workplaces \rightarrow [hosp_lag10]	0.0051733	0.0013351	0.0001*
workplaces \rightarrow [death lag20]	-0.001852	0.0012394	0.1350
workplace closing \rightarrow [icu lag15]	-0.030367	0.0278552	0.2756
workplace_closing \rightarrow [hosp_lag10]	0.0667816	0.0270191	0.0134*
wave \rightarrow workplaces	3.19686	0.5874759	<.0001*
wave \rightarrow workplace closing	0.0754524	0.0217294	0.0005*
wave \rightarrow transport closing	0.0837236	0.0126287	<.0001*
wave \rightarrow transit stations	2.9688032	0.4265175	<.0001*
wave \rightarrow [icu lag15]	0.1807456	0.0274846	<.0001*
wave \rightarrow [hosp lag10]	0.2486583	0.0245819	<.0001*
wave \rightarrow [death lag20]	0.4204896	0.1221507	0.0006*
wave \rightarrow school_closing	-0.316598	0.0169194	<.0001*
wave \rightarrow retail_and_recreation	3.7666174	0.59323	<.0001*
wave \rightarrow residential	-1.129711	0.2063731	<.0001*
wave \rightarrow international_movement_restrictions	0.0842087	0.0199013	<.0001*
wave \rightarrow internal_movement_restrictions	0.0676107	0.0158063	<.0001*
wave \rightarrow grocery_and_pharmacy	5.10812	0.5543045	<.0001*
wave \rightarrow gatherings_restrictions	0.3068871	0.0409729	<.0001*
transport closing \rightarrow [icu lag15]	0.1455176	0.0273859	<.0001*
stringency_index \rightarrow [icu_lag15]	0.0067435	0.0038163	0.0772
stay home restrictions \rightarrow [hosp lag10]	0.0472529	0.022111	0.0326*
$[icu_lag15] \rightarrow [death_lag20]$	1.1659765	0.2939227	<.0001*
$[hosp_lag10] \rightarrow [death_lag20]$	-2.089182	0.410195	<.0001*
retail_and_recreation \rightarrow [hosp_lag10]	-0.005147	0.0014207	0.0003*
residential \rightarrow [hosp_lag10]	0.013011	0.004218	0.0020*
parks \rightarrow [hosp_lag10]	0.0019993	0.0004296	<.0001*
international_movement_restrictions \rightarrow [icu_lag15]	0.0630446	0.018092	0.0005*
internal_movement_restrictions \rightarrow [icu_lag15]	0.1338373	0.0667171	0.0449*
internal movement restrictions \rightarrow [hosp lag10]	0.230179	0.0574105	<.0001*
internal_movement_restrictions \rightarrow [death_lag20]	0.5626452	0.1869919	0.0026*
grocery and pharmacy \rightarrow [hosp lag10]	0.000544	0.0008651	0.5294
gatherings_restrictions \rightarrow [icu_lag15]	-0.063505	0.0407235	0.1189
gatherings_restrictions \rightarrow [hosp_lag10]	-0.061278	0.035522	0.0845
gatherings_restrictions \rightarrow [death_lag20]	-0.141549	0.0740964	0.0561
Covariances	Estimate	SE	Prob> Z
behave ↔ health	-24.47497	8.5668423	0.0043*
grocery_and_pharmacy \leftrightarrow retail_and_recreation	87.867134	9.2979598	<.0001*
residential ↔ workplaces	-10.21344	1.4937324	<.0001*
stay_home_restrictions ↔	0.7703725	0.0643261	<.0001*
internal_movement_restrictions			
stringency index ↔ internal movement restrictions	8.9560929	0.7747634	<.0001*
stringency_index ↔ stay_home_restrictions	8.8102202	0.7537571	<.0001*
stringency_index ↔ transport_closing	3.708656	0.3479073	<.0001*
workplaces ↔ parks	-275.3571	24.166104	<.0001*

Home / Products / DataOps Software / Data Integration and Data Analytics / Pentaho Download - Lumada Data Integration and Analytics

Extract – Transform – Load (ETL)

Lumada Data Integration and Analytics powered by Pentaho

Download Pentaho – Turn Data into Actionable Insights.



O LUMADA

Pentaho Data Integration: Evaluation (PDI1028S)

(60 mins) Self-paced, interactive online training with virtual lab environment for hands-on practice

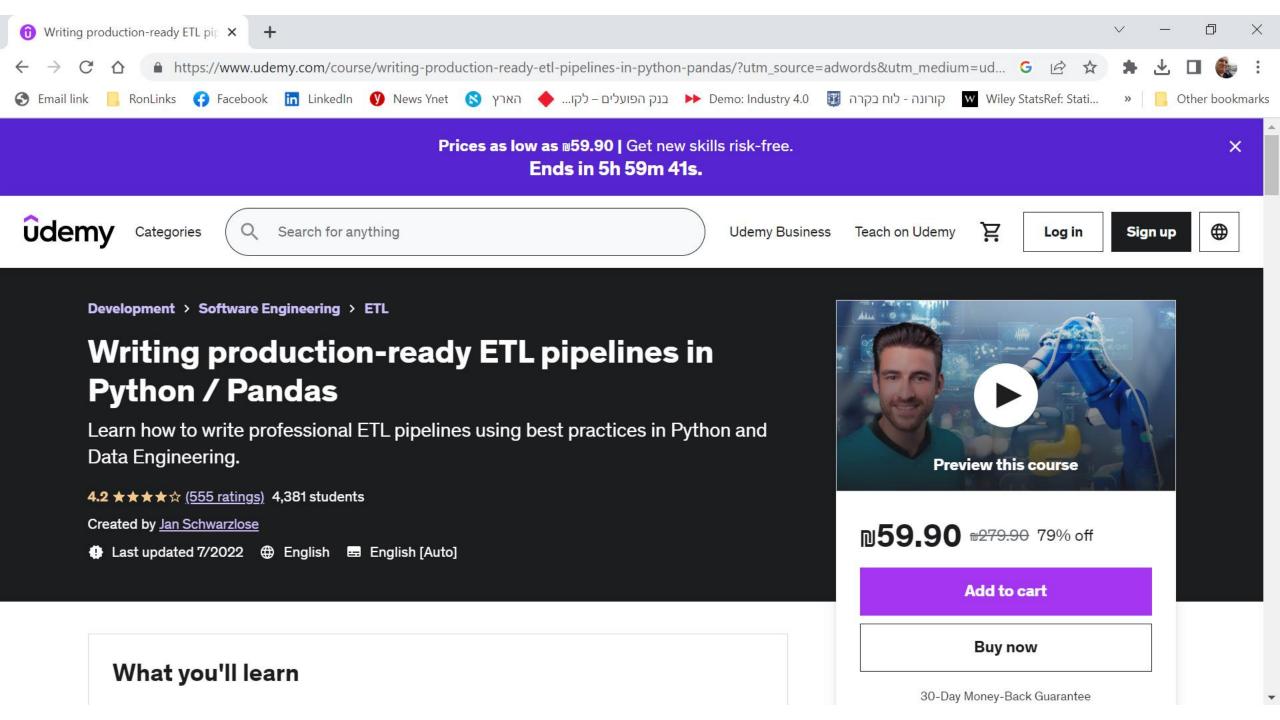
RON KENETT YOSSI RAANAN

SIGN IN

CART (0)

Operational Risk Management

A practical approach to intelligent data analysis



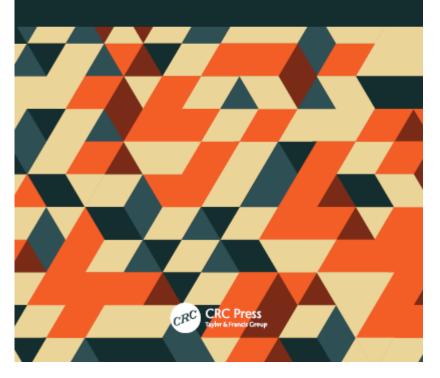
STATISTICS IN PRACTICE

Mastering JMP®

Automated Analytics: Automating ETL Made Easy with Workflow Builder

5.4.9						
BAC of Drivers each Source	h E	* Q	A	<u>M</u>	Number RAC = 0 2011	Nomber_B/
untitled 59 *	< 8	Type Manage	Origin Result	Timestamp "		
 Source Files Stack Script Stack Script 2 Stack Script 3 	 * 1 Alabama 2 Alabama 2 Alabama 4 Alabama 4 Alabama 5 Alaska 6 Alaska 7 Alaska 8 Alaska 	Service Union Tales Operitors (Service Union Tales) Operitors (Service) Operitors (Service) Service Content Service One on Drivers by Search (and Service) Service Content Service One on the Search (Content Sea		00/150221142/41244 00/150221132/414/414 00/1502211583044 00/1502211583044 00/1502211583044 00/1502211543044 00/1502211443144 00/1502211443144	21	
Columns (B/D)	9 Arizona	* Multiple File Inspent;		06-15/0022.11 #5-38 AM	56	
	10 Arzona	< <set foldet<="" td=""><td></td><td>1</td><td>212</td><td></td></set>		1	212	
State	11 Arizona	- Column "BAC O per 1908 Drown" 1		0x/15/0222 11 85:31 AM	E 21	
Licensed Drivers 12 Arizona		Close Date Table: BAC of Drivers and State, 2010-2013, with Number 5		04/15/0022 11:55-54 AM	75	
Label	13 Arkansas	Eliterated Drivers		1.8	1 12	
Deta	14 Arkansas	A Climat Chern Darins : Commun Chimana Int Strawn		Contraction of	154	
Label 2 Deta 2	15 Arkansas	Number of Series(31.		1.	1 27	
Label 3	16 Arkansas	Contiguous		83	23	
Cata 3	17 California	A		10	271	
	18 California			i i	774	1000
	19 California	// Clear row selection		12	290	1000
	20 California	Data Table("untitled 59") << Clear Select:		1	323	
	21 Colorado			1	33	
	22 Colorado			1.0	160	
Rows Urpas 204	23 Colorado				39	
ilinges 204 ielected 0	24 Colorado	4055580 Number (IAC = 0.2013 263 Number)	AC = 01.07 10	Number_BAC = 08+ 2011	40	
included 0	25 Connection	a 2611007 Number BAC = 0.2010 171 Number I	AC = 01-07	Number BAC = .08+ 2016	5 39	
lidden 0	25 Connection	a 2611007 Number_BAC = 0.2011 121 Number_	AC = .0107	Number BAC = .08+ 2011	94	
0 belede	27				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
actualed	0 31 New	Jonary 6238436 401	20		7 399	
Hidden		Mexico 1521785 206			5 232	_

https://link.springer.com/article/10.1007/s10845-021-01817-9


Journal of Intelligent Manufacturing https://doi.org/10.1007/s10845-021-01817-9 https://www.taylorfrancis.com/books/mono/10.1201/9780429292835/prag matic-programmer-machine-learning-marco-scutari-mauromalvestio?context=ubx&refId=4c1ab861-6c68-40d7-be0f-6cf3717fe7e6

A Pragmatic Programmer for Machine Learning

Engineering Analytics and Data Science Solutions

Marco Scutari Mauro Malvestio

Challenges of modeling and analysis in cybermanufacturing: a review from a machine learning and computation perspective

SungKu Kang¹ · Ran Jin¹ · Xinwei Deng¹ · Ron S. Kenett²

Received: 31 December 2020 / Accepted: 19 July 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

In Industry 4.0, smart manufacturing is facing its next stage, cybermanufacturing, founded upon advanced communication, computation, and control infrastructure. Cybermanufacturing will unleash the potential of multi-modal manufacturing data, and provide a new perspective called computation service, as a part of service-oriented architecture (SOA), where on-demand computation requests throughout manufacturing operations are seamlessly satisfied by data analytics and machine learning. However, the complexity of information technology infrastructure leads to fundamental challenges in modeling and analysis under cybermanufacturing, ranging from information-poor datasets to a lack of reproducibility of analytical studies. Nevertheless, existing reviews have focused on the overall architecture of cybermanufacturing/SOA or its technical components (e.g., communication protocol), rather than the potential bottleneck of computation service with respect to modeling and analysis. In this paper, we review the fundamental challenges with respect to modeling and analysis in cybermanufacturing. Then, we introduce the existing efforts in computation pipeline recommendation, which aims at identifying an optimal sequence of method options for data analytics/machine learning without time-consuming trial-and-error. We envision computation pipeline recommendation as a promising research field to address the fundamental challenges in cybermanufacturing. We also expect that computation pipeline recommendation can be a driving force to flexible and resilient manufacturing operations in the post-COVID-19 industry.

Keywords Computation pipelines · Cybermanufacturing · Industry 4.0 · Machine learning · Manufacturing modeling and analysis